

Rudolf-Wissell-Str. 28a 37079 Göttingen, Germany

Phone: +49 551-50556-0
Fax: +49 551-50556-384
E-mail: sales@sysy.com
Web: www.sysy.com

Homer1

Cat.No. 160 002; Polyclonal rabbit antibody, 200 µl antiserum (lyophilized)

Data Sheet

Reconstitution/ Storage	200 μ l antiserum, lyophilized. For reconstitution add 200 μ l H ₂ O, then aliquot and store at -20°C until use. Antibodies should be stored at +4°C when still lyophilized. Do not freeze! For detailed information, see back of the data sheet.
Applications	WB: 1: 1000 (AP staining) IP: yes ICC: 1: 500 up to 1: 1000 IHC: 1: 500 IHC-P: 1: 500 ExM: external data (see remarks)
Immunogen	Recombinant protein corresponding to the N-terminal half of human Homer1 (UniProt Id: Q86YM7)
Reactivity	Reacts with: human (Q86YM7), rat (Q9Z214), mouse (Q9Z2Y3). Other species not tested yet.
Specificity	Specific for Homer1. Cross-reactivity of the serum to Homer2 and 3 was removed by pre-adsorption with Homer2 (aa 1 - 176) and Homer 3 (aa 1 - 177). According to Soloviev et al. (2000), aa 1 - 180 are present in isoforms a, b, c and d.
Matching control	160-0P
Remarks	ICC: 4% formaldehyde/PFA fixation is recommended. The following fixatives are not advised: methanol ExM: This antibody has been successfully applied and published for this method by customers (see application-specific references).

TO BE USED IN VITRO / FOR RESEARCH ONLY NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS

Background

Homer is a scaffolding protein of the post synaptic density (PSD) and enriched at excitatory synapses. The protein binds metabotropic glutamate receptors, TRPC1, proteins of the Shank family and others. By aggregating these proteins into clusters, homer was suggested to organize distinct signalling domains.

Three isoforms, **Homer 1**, 2 and 3 have been described. Each of these isoforms is subject to alternative splicing yielding the splice variants a, b, c, d.

Selected References for 160 002

Microtubule-associated protein 1B (MAP1B)-deficient neurons show structural presynaptic deficiencies in vitro and altered presynaptic physiology.

Bodaleo FJ, Montenegro-Venegas C, Henríquez DR, Court FA, Gonzalez-Billault C

Scientific reports (2016) 6: 30069. . WB, ICC

Comparison of Multiscale Imaging Methods for Brain Research.

Tröger J, Hoischen C, Perner B, Monajembashi S, Barbotin A, Löschberger A, Eggeling C, Kessels MM, Qualmann B, Hemmerich P Cells (2020) 96: . . ICC, IHC; tested species: mouse,rat

Nonapoptotic caspase-3 guides C1q-dependent synaptic phagocytosis by microglia.

Andoh M, Shinoda N, Taira Y, Araki T, Kasahara Y, Takeuchi H, Miura M, Ikegaya Y, Koyama R

Nature communications (2025) 161: 918. . ICC, IHC; tested species: mouse

Astrocyte-secreted neurocan controls inhibitory synapse formation and function.

Irala D, Wang S, Sakers K, Nagendren L, Ulloa Severino FP, Bindu DS, Savage JT, Eroglu C

Neuron (2024) 11210: 1657-1675.e10. . ICC, IHC; tested species: mouse,rat

A genetic variant of the Wnt receptor LRP6 accelerates synapse degeneration during aging and in Alzheimer's disease. Jones ME, Büchler J, Dufor T, Palomer E, Teo S, Martin-Flores N, Boroviak K, Metzakopian E, Gibb A, Salinas PC Science advances (2023) 92: eabo7421. ICC, IHC; tested species: mouse

Changes in the Synaptic Proteome in Tauopathy and Rescue of Tau-Induced Synapse Loss by C1q Antibodies.

Dejanovic B, Huntley MA, De Mazière A, Meilandt WJ, Wu T, Srinivasan K, Jiang Z, Gandham V, Friedman BA, Ngu H, Foreman O, et al.

Neuron (2018):.. WB, ICC; tested species: mouse

Contribution of the astrocytic tau pathology to synapse loss in progressive supranuclear palsy and corticobasal degeneration.

Briel N, Pratsch K, Roeber S, Arzberger T, Herms J

Brain pathology (Zurich, Switzerland) (2021) 314: e12914. . IHC-P; tested species: human

Selective regulation of corticostriatal synapses by astrocytic phagocytosis.

Kim JY, Kim H, Chung WS, Park H

Nature communications (2025) 161: 2504. . IHC; tested species: mouse

Gating of hair cell Ca2+ channels governs the activity of cochlear neurons.

Karagulyan N, Thirumalai A, Michanski S, Qi Y, Fang Q, Wang H, Ortner NJ, Striessnig J, Strenzke N, Wichmann C, Hua Y, et al. Science advances (2025) 1125: eadu7898. IHC; tested species: mouse

Psychedelic control of neuroimmune interactions governing fear.

Chung EN, Lee J, Polonio CM, Choi J, Akl CF, Kilian M, Weiß WM, Gunner G, Ye M, Heo TH, Drake SS, et al.

Nature (2025) 6418065: 1276-1286. . IHC; tested species: mouse

 $SynBot\ is\ an\ open-source\ image\ analysis\ software\ for\ automated\ quantification\ of\ synapses.$

Savage JT, Ramirez JJ, Risher WC, Wang Y, Irala D, Eroglu C

Cell reports methods (2024) 49: 100861.. ICC; tested species: mouse,rat

Vaccination reduces central nervous system IL-1β and memory deficits after COVID-19 in mice. Vanderheiden A, Hill JD, Jiang X, Deppen B, Bamunuarachchi G, Soudani N, Joshi A, Cain MD, Boon ACM, Klein RS

Nature immunology (2024) 257: 1158-1171.. IHC; tested species: mouse

Access the online factsheet including applicable protocols at https://sysy.com/product/160002 or scan the QR-code.

FAQ - How should I store my antibody?

Shipping Conditions

 All our antibodies and control proteins / peptides are shipped lyophilized (vacuum freezedried) and are stable in this form without loss of quality at ambient temperatures for several weeks.

Storage of Sealed Vials after Delivery

- Unlabeled and biotin-labeled antibodies and control proteins should be stored at 4°C before reconstitution. They must not be stored in the freezer when still lyophilized!
 Temperatures below zero may cause loss of performance.
- Fluorescence-labeled antibodies should be reconstituted immediately upon receipt. Long term storage (several months) may lead to aggregation.
- **Control peptides** should be kept at -20°C before reconstitution.

Long Term Storage after Reconstitution (General Considerations)

- The storage freezer must not be of the frost-free variety ("no-frost freezer"). This cycle
 between freezing and thawing (to reduce frost-build-up), which is exactly what should be
 avoided. For the same reason, antibody vials should be placed in an area of the freezer that
 has minimal temperature fluctuations, for instance towards the back rather than on a door
 shelf.
- Aliquot the antibody and store frozen (-20°C to -80°C). Avoid very small aliquots (below 20 µl)
 and use the smallest storage vial or tube possible. The smaller the aliquot, the more the stock
 concentration is affected by evaporation and adsorption of the antibody to the surface of the
 storage vial or tube. Adsorption of the antibody to the surface leads to a substantial loss of
 activity.
- The addition of glycerol to a final concentration of 50% lowers the freezing point of your stock and keeps your antibody at -20°C in liquid state. This efficiently avoids freeze and thaw cycles.

Product Specific Hints for Storage

Control proteins / peptides

• Store at -20°C to -80°C.

Monoclonal Antibodies

- Ascites and hybridoma supernatant should be stored at -20°C up to -80°C. Prolonged storage at 4°C is not recommended! Unlike serum, ascites may contain proteases that will degrade the antibodies.
- **Purified IgG** should be stored at -20°C up to -80°C. Adding a carrier protein like BSA will increase long term stability. Many of our antibodies already contain carrier proteins. Please refer to the data-sheet for detailed information.

Polyclonal Antibodies

- Crude antisera: With anti-microbials added, they may be stored at 4°C. However, frozen storage (-20°C up to -80°C) is preferable.
- Affinity purified antibodies: Less robust than antisera. Storage at -20°C up to -80°C is
 recommended. Adding a carrier protein like BSA will increase long term stability. Most of our
 antibodies already contain carrier proteins. Please refer to the data-sheet for detailed
 information.

Fluorescence-labeled Antibodies

• Store as a liquid with 1:1 (v/v) glycerol at -20°C. Protect these antibodies from light exposure.

Avoid repeated freeze-thaw cycles for all antibodies!

FAQ - How should I reconstitute my antibody?

Reconstitution

- All our purified antibodies are lyophilized from PBS. To reconstitute the antibody in PBS, add
 the amount of deionized water given in the respective datasheet. If higher volumes are
 preferred, add water as mentioned above and then the desired amount of PBS and a
 stabilizing carrier protein (e.g. BSA) to a final concentration of 2%. Some of our antibodies
 already contain albumin. Take this into account when adding more carrier protein.
 For complete reconstitution, carefully remove the lid. After adding water, briefly vortex the
 solution. You can spin down the liquid by placing the vial into a 50 ml centrifugation tube filled
 with paper.
- If desired, add small amounts of azide or thimerosal to prevent microbial growth. This is especially recommended if you want to keep an aliquot a 4°C.
- After reconstitution of fluorescence-labeled antibodies, add 1:1 (v/v) glycerol to a final
 concentration of 50%. This lowers the freezing point of your stock and keeps your antibody in
 liquid state at -20°C.
- Glycerol may also be added to unlabeled primary antibodies. It is a suitable way to avoid freezethaw cycles.
- Please refer to our tips and hints for subsequent storage of reconstituted antibodies and control peptides and proteins.